Kick-ass Flash templates from TemplateMonster!

 Водоподготовка

Методы водоподготовки


ВВЕДЕНИЕ

ГЛАВА 1. СВОЙСТВА И СОСТАВ ВОДЫ

        1.1. Физические свойства воды

        1.2. Взвешенные примеси

        1.3. Мутность и прозрачность

        1.4. Запах

        1.5. Вкус и привкус

        1.6. Цветность

        1.7. Минерализация

        1.8. Электропроводность

        1.9. Жесткость

        1.10. Щелочность

        1.11. Органические вещества

ГЛАВА  2. ВЫБОР МЕТОДОВ ВОДОПОДГОТОВКИ

       2.1.  Физико-химические процессы обработки воды

               2.1.1. Коагуляция и флокуляция

       2.2.  Осветление воды фильтрованием

               2.2.1. Классификация фильтров с зернистой нагрузкой

               2.2.2. Технология фильтрования

ГЛАВА  3. ИОННЫЕ МЕТОДЫ ОЧИСТКИ

         3.1. Катионирование

                3.1.1. Натрий-катионирование

                3.1.2. Водород-катионирование

                3.1.3. Иные методы катионирования

         3.2. Анионирование

         3.3. Обессоливание воды ионным методом

         3.4. Деминерализация воды ионированием

         3.5. Условия применения ионообменных установок

         3.6. Фильтры смешанного действия

         3.7. Особенности ионообменной технологии

ГЛАВА  4. ДЕКАРБОНИЗАЦИЯ ВОДЫ

ГЛАВА  5. БАРОМЕМБРАННЫЕ МЕТОДЫ ВОДОПОДГОТОВКИ

          5.1. Обратный осмос

          5.2. Ультрафильтрация

          5.3. Мембраны

ГЛАВА  6. МЕТОДЫ ОБЕЗЖЕЛЕЗИВАНИЯ ВОДЫ

ГЛАВА  7. ДЕМАНГАНАЦИЯ ВОДЫ

         7.1.  Методы деманганации

ГЛАВА  8. ОБЕЗЗАРАЖИВАНИЕ ВОДЫ

8.1 Хлорирование воды

8.2 Озонирование воды

8.3 Ультрафиолетовое обеззараживание воды

8.4 Сравнение основных методов обеззараживания воды

ГЛАВА  9. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

 

Введение

 

Долгие годы и столетия водоподготовка не выделялась как отрасль техники и еще менее – как отрасль химической технологии. Использовались эмпирически найденные приемы и способы очистки воды, главным образом, противоинфекционные. И потому история водоподготовки – это история приспособления для подготовки и очистки воды известных химических процессов и технологий, нашедших или находящих свое применение. Подготовка воды для питьевого и промышленного водоснабжения принципиально отличается от других областей химической технологии: процессы водоподготовки протекают в больших объемах воды и при очень малых количествах растворенных веществ. Значит, большие расходы воды требуют устройства крупногабаритного оборудования, а малое количество извлекаемых из воды веществ неизбежно влечет за собой применение «тонких» методов обработки воды. В настоящее время усиленно разрабатываются научные основы технологий обработки воды, учитывающие указанную специфику этой отрасли техники. И такая работа далека от завершения, если можно вообще говорить об окончательном познании воды. Было бы громадным преувеличением утверждать, что передовые научные и конструкторские силы, лучшие машиностроительные мощности были направлены на реализацию потребностей водоподготовки. Напротив, внимание к этой отрасли и, стало быть, финансирование проявлялись в наименьшем объеме, по остаточному принципу.

Испытания, выпавшие на долю России за последние 12–15 лет, в полной мере познала и водоподготовка.  И заказчики, и поставки водоподготовительного оборудования все больше, если можно так выразиться, индивидуализируются. В прошлые годы поставки были, как правило, оптовыми, а теперь, в основном, – мелкооптовые и одиночные. Не говоря о том, что совсем недавно отсутствовало российское производство бытовых фильтров и систем автономного водоснабжения, по определению поставляемых в одном или нескольких экземплярах. Да и импорт такого оборудования был весьма скуден. Значит, в водоподготовку вовлекается множество людей, ранее с ней незнакомых. Кроме того, при малочисленности специалистов по водоподготовке водой занимаются многие инженеры, получившие образование по другим специальностям. Вряд ли можно назвать легкой задачу  обеспечения потребителей качественной питьевой водой.

 

Практически невозможно даже кратко рассмотреть все методы водоочистки и водоподготовки. Здесь мы хотели обратить внимание читателей на наиболее часто применяемые на практике в современных технологиях на очистных сооружениях различных систем водоснабжения.

 

1. Свойства и состав воды

 

Вода – самое аномальное вещество природы. Это расхожее выражение связано с тем, что свойства воды во многом не соответствуют физическим законам, которым подчиняются другие вещества. Прежде всего необходимо напомнить: когда мы говорим о природной воде, все суждения должны быть отнесены не к воде как таковой, а к водным растворам разных, фактически всех, элементов Земли. До сих пор получить химически чистую воду не удалось.

 

                 1.1 Физические свойства воды

 

Полярная асимметричная структура воды и разнообразие ее ассоциатов обусловливают удивительные аномальные физические свойства воды. Вода достигает наибольшей плотности при плюсовой температуре, у нее аномально высокие теплота испарения и теплота плавления, удельная теплоемкость, температура кипения и замерзания. Большая удельная теплоемкость   4,1855 Дж/(г°С) при 15°С – способствует регулированию температуры на Земле из-за медленного нагревания и остывания масс воды. У ртути, к примеру, удельная теплоемкость при 20°С – только 0,1394 Дж/(г°С). Вообще теплоемкость воды более чем вдвое превышает теплоемкость любого другого химического соединения. Этим можно объяснить выбор воды в качестве рабочего тела в энергетике. Аномальное свойство воды – расширение объема на 10% при замерзании обеспечивает плавание льда, то есть опять сохраняет жизнь подо льдом. Еще одно чрезвычайно важное свойство воды – исключительно большое поверхностное натяжение. Молекулы на поверхности воды испытывают действие межмолекулярного притяжения с одной стороны. Так как у воды силы межмолекулярного взаимодействия аномально велики, то каждая «плавающая» на поверхности воды молекула как бы втягивается внутрь слоя воды. У воды поверхностное натяжение равно 72 мН/м при 25°С. В частности, этим свойством объясняется шаровая форма воды в условиях невесомости, поднятие воды в почве и в капиллярных сосудах деревьев, растений и т.д.

 

Природная вода – сложная дисперсная система, содержащая множество разнообразных минеральных и органических примесей.

 

Под качеством природной воды в целом понимается характеристика ее состава и свойств, определяющая ее пригодность для конкретных видов водопользования, при этом критерии качества представляют собой признаки, по которым производится оценка качества воды.

 

1.2. Взвешенные примеси

 

Взвешенные твердые примеси, присутствующие в природных водах, состоят из частиц глины, песка, ила, суспендированных органических и неорганических веществ, планктона и различных микроорганизмов. Взвешенные частицы влияют на прозрачность воды.

Содержание в воде взвешенных примесей, измеряемое в мг/л, дает представление о загрязненности воды частицами в основном условным диаметром более 1·10-4 мм. При содержании в воде взвешенных веществ менее 2–3 мг/л или больше указанных значений, но условный диаметр частиц меньше 1 · 10-4 мм, определение загрязненности воды производят косвенно по мутности воды.

 

1.3. Мутность и прозрачность

 

Мутность воды вызвана присутствием тонкодисперсных примесей, обусловленных нерастворимыми или коллоидными неорганическими и органи ческими веществами различного происхождения. Наряду с мутностью, особенно в случаях, когда вода имеет незначительные окраску и мутность, и их определение затруднительно, пользуются пока зателем «прозрачность».

 

1.4. Запах

 

Характер и интенсивность запаха природной воды определяют органолептически. По характеру запахи делят на две группы: естественного происхождения (живущие и отмершие в воде организмы, загнивающие растительные остатки и др.); искусственного происхождения (примеси промышленных и сельскохозяйственных сточных вод). Запахи второй группы (искусственного происхождения) называют по определяющим запах веществам: хлорный, бензиновый и т.д.

 

1.5. Вкус и привкус

 

Различают четыре вида вкусов воды: соленый, горький, сладкий, кислый. Качественную характеристику оттенков вкусовых ощущений – привкуса – выражают описательно: хлорный, рыбный, горьковатый и так далее. Наиболее распространенный соленый вкус воды чаще всего обусловлен растворенным в воде хлоридом натрия, горький – сульфатом магния, кислый – избытком свободного диоксида углерода и т.д.

 

1.6. Цветность

 

Показатель качества воды, характеризующий интенсивность окраски воды и обусловленный содержанием окрашенных соединений, выражается в градусах платино-кобальтовой шкалы и определяется путем сравнения окраски испытуемой воды с эталонами. Цветность природных вод обусловлена главным образом присутствием гумусовых веществ и соединений трехвалентного железа, колеблется от единиц до тысяч градусов.

 

1.7. Минерализация

 

Минерализация – суммарное содержание всех найденных при химическом анализе воды мине ральных веществ. Минерализация природных вод, определяющая их удельную электропроводность, изменяется в широких пределах. Большинство рек имеет минерализацию от нескольких десятков миллиграммов в литре до нескольких сотен. Их удельная электропроводимость варьирует от 30 до 1500 мкСм/см. Минерализация подземных вод и соленых озер изменяется в интервале от 40–50 мг/л до сотен г/л (плотность в этом случае уже значительно отличается от единицы). Удельная электропроводимость атмосферных осадков с минерализацией от 3 до 60 мг/л составляет значения 10–120 мкСм/см. Природные воды поминерализации разделены на группы. Предел пресных вод – 1 г/кг – установлен в связи с тем, что при минерализации более этого значения вкус воды неприятен – соленый или горько-соленый.

 

1.8. Электропроводность

 

Электропроводимость – это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость воды зависит в основном от концентрации растворенных минеральных солей и температуры.

По значениям электропроводимости можно приближенно судить о минерализации воды.

вод

Вид вод Минерализация Плотность,

1.9. Жесткость

 

Жесткость воды обусловливается наличием в воде ионов кальция, магния, стронция, бария, железа, марганца. Но общее содержание в природных водах ионов кальция и магния несравнимо больше содержания всех других перечисленных ионов – и даже их суммы. Поэтому под жесткостью понимают сумму количеств ионов кальция и магния – общая жесткость, складывающаяся из значений карбонатной (временной, устраняемой кипячением) и некарбонатной (постоянной) жесткости. Первая вызвана присутствием в воде гидрокарбонатов кальция и магния, вторая наличием сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов. Однако при значении жесткости воды более 9 ммоль/л нужно учитывать содержание в воде стронция и других щелочноземельных металлов.

По стандарту ИСО 6107-1-8:1996, включающему более 500 терминов, жесткость определяется как способность воды образовывать пену с мылом. В России жесткость воды выражают в ммоль/л. В жесткой воде обычное натриевое мыло превращается (в присутствии ионов кальция) в нерастворимое «кальциевое мыло», образующее бесполезные хлопья. И, пока таким способом не устранится вся кальциевая жесткость воды, образование пены не начнется. На 1 ммоль/л жесткости воды для такого умягчения воды теоретически затрачивается 305 мг мыла, практически – до 530. Но, конечно, основные неприятности – от накипеобразования.

 

 

Классификация воды по жесткости (ммоль/л):Группа воды Единица измерения, ммоль/л

Очень мягкая………………..до 1,5

Мягкая……………………….1,5 - 4,0

Средней жесткости………… 4 - 8

Жесткая……………………... 8 - 12

Очень жесткая……………….более 12

 

1.10. Щелочность

 

Щелочностью воды называется суммарная концентрация содержащихся в воде анионов слабых кислот и гидроксильных ионов (выражена в ммоль/л), вступающих в реакцию при лабораторных исследованиях с соляной или серной кислотами с образованием хлористых или сернокислых солей щелочных и щелочноземельных металлов. Различают следующие формы щелочности воды: бикарбонатная (гидрокарбонатная), карбонатная, гидратная, фосфатная, силикатная, гуматная – в зависимости от анионов слабых кислот, которыми обусловливается щелочность.

Щелочность природных вод, рН которых обыч- но < 8,35, зависит от присутствия в воде бикарбонатов, карбонатов, иногда и гуматов. Щелочность других форм появляется в процессах обработки воды.

Так как в природных водах почти всегда щелочность определяется бикарбонатами, то для таких вод общую щелочность принимают равной карбонатной жесткости.

 

1.11. Органические вещества

 

Спектр органических примесей очень широк:

- гуминовые кислоты и их соли – гуматы натрия, калия, аммония;

- некоторые примеси промышленного происхождения;

- часть аминокислот и белков;

- фульвокислоты (соли) и гуминовые кислоты и их соли – гуматы кальция, магния, железа;

- жиры различного происхождения;

- частицы различного происхождения, в том числе микроорганизмы.

Содержание органических веществ в воде оценивается по методикам определения окисляемости воды, содержания органического углерода, биохимической потребности в кислороде, а также поглощения в ультрафиолетовой области. Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая (методики определения двух последних применяются редко). Окисляемость выражается в миллиграммах кислорода, эквивалентного количеству реагента, пошедшего на окисление органических веществ, содержащихся в 1 л воды. В подземных водах (артезианских) органических примесей практически  нет, а  в поверхностных  - «органики» в решающей степени больше.

 

2. Выбор методов водоподготовки

 

Методы водоподготовки должны выбираться при сопоставлении состава исходной воды и ее качества, регламентированного нормативными документами или определенного потребителем воды. После предварительного подбора методов очистки воды анализируются возможности и условия их применения, исходящие из поставленной задачи. Чаще всего результат достигается поэтапным осуществлением нескольких методов. Таким образом, важными являются как выбор собственно методов обработки воды, так и их последовательность.

Методов водоподготовки – около 40. Здесь рассмотрены только наиболее часто применяемые.

 

2.1.Физико-химические процессы обработки воды

 

Эти процессы характеризуются использованием химических реагентов для дестабилизации и увеличения размеров частиц, образующих загрязнение после чего осуществляется физическое выделение твердых частиц из жидкой фазы.

 

2.1.1. Коагуляция и флокуляция

 

Коагуляция и флокуляция – это две совершенно разные составляющие физико-химической очистки  воды.

Коагуляция – это этап, во время которого происходит дестабилизация коллоидных частиц (похожих на шарики диаметром менее 1 мкм).

Слово коагуляция происходит от латинского “coagulare”, что означает “агломерировать, слипаться, скапливаться”. При обработке воды коагуляция достигается путем добавления химических реагентов в водяную суспензию, где рассеянные коллоидные частицы собираются в большие агрегаты, называемые хлопьями или микрохлопьями.

Коллоиды – это нерастворимые частицы, которые находятся в воде во взвешенном состоянии. Малые размеры (менее 1 мкм) делают эти частицы исключительно стабильными. Частицы могут быть разного происхождения:

- Минерального: ил, глины, кремнезем, гидроксиды и соли металлов и т. д.

- Органического: гуминовые и фульвиновые кислоты, красители, поверхностно-активные вещества и  

   т. д.

Примечание: микроорганизмы, такие, как бактерии, планктон, водоросли, вирусы, также считаются коллоидами.

Стабильность и, следовательно, нестабильность взвешенных частиц является фактором, определяемым разными силами притяжения и отталкивания:

- Силами межмолекулярного взаимодействия

- Электростатическими силами

- Притяжением земли

- Силами, участвующими в броуновском движении

Коагуляция – это как физический, так и химический процесс. Реакции между частицами и коагулянтом обеспечивают образование агрегатов и их последующее осаждение. Катионные коагулянты нейтрализуют отрицательный заряд коллоидов и образуют рыхлую массу, которая называется микрохлопьями.

Механизм коагуляции можно свести к двум ступеням:

1- Нейтрализация заряда: что соответствует уменьшению электрических зарядов, которые оказывают отталкивающее действие на коллоиды.

2- Образование агрегатов частиц.

В настоящее время применяются в основном минеральные коагулянты. В их основе лежат, главным образом, соли железа  или алюминия. Это наиболее часто используемые коагулянты. Заряд катиона здесь создается ионами металлов, которые образуются из гидроокисей железа или алюминия при контакте с водой. Основными преимуществами таких коагулянтов являются универсальность их применения и низкая стоимость.

Коагуляция – это промежуточный, но очень важный этап процесса физико-химической очистки воды и стоков. Это первый этап удаления коллоидных частиц, основная функция которого заключается в дестабилизации частиц. Дестабилизация, главным образом, состоит в нейтрализации электрического заряда, присутствующего на поверхности частицы, что способствует слипанию коллоидов.

Флокуляция – это этап, во время которого дестабилизированные коллоидные частицы (или частицы, образованные на стадии коагуляции) собираются в агрегаты.

Этап флокуляции может проходить только в воде, где частицы уже дестабилизировались. Это этап, логически следующий за коагуляцией. Флокулянты с их зарядом и очень высоким молекулярным весом (длинные мономерные цепи) фиксируют дестабилизированные частицы и объединяют их вдоль полимерной цепи. В результате на этапе флокуляции происходит увеличение размера частиц, находящихся в водной фазе, которое выражается в образовании хлопьев.

Связи между дестабилизированными частицами и флокулянтом являются, как правило, ионными и водородными.

 

2.2. Осветление воды фильтрованием

 

Начальным этапом водоподготовки, как правило, является освобождение ее от взвешенных примесей – осветление воды, иногда классифицируемое как предварительная обработка.

Различают несколько типов фильтрования:

 процеживание – размеры пор фильтрующего материала меньше размеров задерживаемых частиц;

пленочное фильтрование – при определенных условиях после некоторого начального периода фильтрующий материал обволакиваются пленкой взвешенных веществ, на которой могут задерживаться частицы даже более мелкие, чем размер пор фильтрующего материала: коллоиды, мелкие бактерии, крупные вирусы;

объемное фильтрование – взвешенные частицы, проходя через слой фильтрующего материала, многократно изменяют направление и скорость движения в щелях между гранулами и волокнами фильтрующего материала; таким образом, грязеемкость фильтра может быть довольно большой – больше, чем при пленочном фильтровании. Фильтрование в тканевых, керамических, почти во всех фильтрах с неткаными волокнистыми фильтрующими элементами осуществляется по первым двум – из названных – типам; в мелкозернистых насыпных фильтрах – по второму типу, в крупнозернистых насыпных – по третьему.

 

2.2.1. Классификация фильтров с зернистой загрузкой

 

Зернистые фильтры применяют, в основном, при очистке жидкостей, у которых содержание твердой фазы ничтожно мало, и осадок не представляет ценности, основное назначение фильтров – для осветления природной воды. Именно они наиболее широко применяются в технике водоподготовки. Классификация фильтров по ряду основных признаков:

скорость фильтрования:

– медленные (0,1–0,3 м/ч);

– скорые (5–12 м/ч);

– сверхскоростные (36–100 м/ч);

давление, под которым они работают:

– открытые или безнапорные;

– напорные;

количество фильтрующих слоев:

– однослойные;

– двухслойные;

– многослойные.

Наиболее эффективны и экономичны многослойные фильтры, в которых для увеличения грязеемкости и эффективности фильтрации загрузку составляют из материалов с различной плотностью и размером частиц: сверху слоя – крупные легкие частицы, внизу – мелкие тяжелые. При нисходящем направлении фильтрования крупные загрязнения задерживаются в верхнем слое загрузки, а оставшиеся мелкие – в нижнем. Таким образом, работает весь объем загрузки. Осветлительные фильтры эффективны при задержании частиц размером >10 мкм.

 

2.2.2. Технология фильтрования

 

Вода, содержащая взвешенные частицы, двигаясь через зернистую загрузку, задерживающую взвешенные частицы, осветляется. Эффективность процесса зависит от физико-химических свойств примесей, фильтрующей загрузки и гидродинамических факторов. В толщине загрузки происходит накапливание загрязнений, уменьшается свободный объем пор и возрастает гидравлическое сопротивление загрузки, что приводит к росту потерь напора в загрузке.

В общем виде, процесс фильтрации можно условно разбить на несколько стадий: перенос частиц из потока воды на поверхность фильтрующего материала; закрепление частиц на зернах и в щелях между ними; отрыв закрепленных частиц с переходом их обратно в поток воды. Извлечение примесей из воды и закрепление их на зернах загрузки происходит под действием сил адгезии. Осадок, формирующийся на частицах загрузки, имеет непрочную структуру, которая под влиянием гидродинамических сил может разрушаться. Некоторая часть ранее прилипших частиц отрывается от зерен загрузки в виде мелких хлопьев и переносится в последующие слои загрузки (суффозия), где вновь задерживается в поровых каналах. Таким образом, процесс осветления воды нужно рассматривать как суммарный результат процесса адгезии и суффозии. Осветление в каждом элементарном слое загрузки происходит до тех пор, пока интенсивность прилипания частиц превышает интенсивность отрыва. По мере насыщения верхних слоев загрузки процесс фильтрации переходит на нижерасположенные, зона фильтрации как бы сходит по направлению потока от области, где фильтрующей мате- риал уже насыщен загрязнением и преобладает процесс суффозии к области свежей загрузки.

Затем наступает момент, когда весь слой загрузки фильтра оказывается насыщенным загрязнениями воды, и требуемая степень осветления воды не обеспечивается. Концентрация взвеси на выходе загрузки начинает возрастать.

Время, в течение которого достигается осветление воды до заданной степени, называется временем защитного действия загрузки. При его достижении либо при достижении предельной потери напора осветлительный фильтр необходимо перевести в режим взрыхляющей промывки, когда загрузка промывается обратным током воды, а загрязнения сбрасываются в дренаж.

Возможность задержания фильтром грубой взвеси зависит, в основном, от ее массы; тонкой взвеси и коллоидных частиц – от поверхностных сил. Важное значение имеет заряд взвешенных частиц, так как коллоидные частицы одноименного заряда не могут объединяться в конгломераты, укрупняться и оседать: заряд препятствует их сближению. Преодолевается это «отчуждение»частиц искусственным коагулированием. В результате коагуляции образуются агрегаты — более крупные (вторичные) частицы, состоящие из скопления более мелких (первичных).  Как правило, коагулирование (иногда, дополнительно, флокулирование) производится в отстойниках-осветлителях.

Часто этот процесс совмещается с умягчением воды известкованием, или содоиз весткованием, или едконатровым умягчением. В обычных осветлительных фильтрах чаще все го наблюдается пленочное фильтрование. Объемное фильтрование организуют в двухслойных фильтрах и в так называемых контактных осветлителях. В фильтр засыпают нижний слой кварцевого песка с размером зерен 0,65–0,75 мм и верхний слой антрацита с размером зерен 1,0–1,25 мм. На верхней поверхности слоя крупных зерен антрацита пленка не образуется, взвешенные примеси проникают вглубь слоя – в поры и откладываются на поверхности зерен. Взвешенные вещества, прошедшие слой антрацита, задерживаются нижним слоем песка. При взрыхляющей промывке фильтра слои песка и антрацита не перемешиваются, так как плотность антрацита вдвое меньше плотности кварцевого песка.

 

 

 

 

3. Ионообменные  методы  очистки

 

Ионный обмен – это процесс извлечения из воды одних ионов и замены их другими. Процесс осуществляется с помощью ионообменных веществ – нерастворимых в воде искусственно гранулированных веществ, специальных нетканых материалов или природных цеолитов, имеющих в своей структуре кислотные или основные группы, способные заменяться положительными или отрицательными ионами.

Ионообменная технология – самая применяемая сегодня для умягчения и деминерализации воды. Эта технология позволяет добиться качества воды, соответствующего нормам разных промышленных и энергетических объектов.

Очистка промывных кислых вод методом ионного обмена основана на способности нерастворимых в воде ионитов вступать в ионный обмен с растворимыми в воде солями, извлекая из растворов их катионы или анионы и отдавая в раствор эквивалентное количество ионов, которыми катионит и анионит периодически насыщается при регенерации.

  Ионообменный метод очистки воды применяют для обессоливания и очистки воды от ионов металлов и других примесей. Сущность ионного обмена заключается в способности ионообменных материалов забирать из растворов электролита ионы в обмен на эквивалентное количество ионов ионита.

  Очистку воды осуществляют ионитами — синтетическими ионообменными смолами, изготовленными в виде гранул размером 0,2...2 мм. Иониты изготовляют из нерастворимых в воде полимерных веществ, имеющих на своей поверхности подвижный ион (катион или анион), который при определенных условиях вступает в реакцию обмена с ионами того же знака, содержащимися в воде.

  Избирательное поглощение молекул поверхностью твердого адсорбента происходит вследствие воздействия на них неуравновешенных поверхностных сил адсорбента.

  Ионообменные смолы имеют возможность регенерации. После истощения рабочей обменной емкости ионита он теряет способность обмениваться ионами и его необходимо регенерировать. Регенерация производится насыщенными растворами, выбор которых зависит от типа ионообменной смолы. Процессы восстановления, как правило, протекают в автоматическом режиме. На регенерацию обычно затрачивают около 2 часов, из них на взрыхление - 10 – 15 мин, на фильтрование регенерирующего раствора - 25 – 40 мин, на отмывку - 30 - 60 мин. Ионообменную очистку реализуют последовательным фильтрованием воды через катиониты и аниониты.

  В зависимости от вида и концентрации примесей в воде, требуемой эффективности очистки используют различные схемы ионообменных установок.

 

3.1. Катионирование

 

        Катионирование, как следует из названия, применяется для извлечения растворенных катионов из воды, т.е. катионирование - процесс обработки воды методом ионного обмена, в результате которого происходит обмен катионов. В зависимости от вида ионов (Н+ или Na+), находящихся в объеме катионита, различают два основных вида катионирования: натрий-катионирование и водород-катионирование.

 

3.1.1. Натрий-катионирование

 

  Натрий-катионитовый метод применяют для умягчения воды с содержанием взвешенных веществ в воде не более 8 мг/л и цветностью воды не более 30 град. Жесткость воды снижается при одноступенчатом натрий-катионировании до значений 0,05 - 0,1 мг-экв/л, при двухступенчатом - до 0,01 мг-экв/л. Процесс натрий-катионирования описывается следующими реакциями обмена:

 

  Регенерация Na-катионита достигается фильтрованием через него со скоростью 3-4 м/ч 5-8% раствора поваренной соли.   

  Достоинства поваренной соли как регенерационного раствора:

1. дешевизна;

2. доступность;

3. продукты регенерации  легко утилизируются.

 

3.1.2. Водород-катионирование

 

  Водород-катионитовый метод применяют для глубокого умягчения воды. Этот метод основан на фильтровании обрабатываемой воды через слой катионита, содержащего в качестве обменных ионов катионы водорода.

При водород-катионировании воды значительно снижается рН фильтрата за счет кислот, образующихся в ходе процесса. Углекислый газ, выделяющийся при реакциях умягчения, можно удалить дегазацией. Регенерация Н-катионита в этом случае производится 4 – 6% раствором кислоты.

 

3.1.3. Иные методы катионирования

 

 Метод натрий-хлор-ионирования применяется, когда нужно уменьшить общую жесткость, общую щелочность и минерализацию исходной воды, увеличить критерий потенциальной щелочной агрессивности (уменьшить относительную щелочность) котловой воды, уменьшить диоксид углерода в паре и значение продувки паровых котлов – путем фильтрования последовательно через слой натрий-катионита в одном фильтре и через слои: сначала – хлор-анионита и затем – натрий-катионита в другом фильтре.

Водород-натрий-катионирование (совместное, параллельное или последовательное с нормальной или «голодной» регенерацией водород-катионитных фильтров) – для уменьшения общей жесткости, общей щелочности и минерализации воды, а также увеличения критерия потенциальной щелочной агрессивности котловой воды, уменьшения содержания углекислоты в паре и уменьшения продувки котлов.

Аммоний-натрий-катионирование используется для достижения тех же целей, что и при натрий- хлор-ионировании.

 

3.2. Анионирование

 

Анионирование, как следует из названия, при- меняется для извлечения растворенных анионов из воды. Анионированию подвергается вода, уже прошедшая предварительное катионирование. Регенерацию анионитного фильтра проводят обычно щелочью (NaOH).  После исчерпания рабочей обменной емкости анионита он регенерируется Поглощать из воды анионы сильных кислот способны как сильно-, так и слабоосновные аниониты. Анионы слабых кислот – угольной и кремниевой – поглощаются только сильноосновными анионитами Для сильноосновных анионитов в качестве регенеранта применяют раствор NaOH (поэтому процесс называют также гидроксид-анионированием). Механизм ионного обмена и влияние разных факторов на технологию процесса анионирования во многом аналогичны их влиянию на процессы катионирования, но есть и существенные отличия. Слабоосновные аниониты в разной степени способны к сорбции разных анионов. Как правило, соблюдается определенный ряд, в котором каждый предыдущий ион поглощается более активно и в большем количестве, чем следующий.

В технологической цепочке деминерализации ионированием после водород-катионитных и слабоосновных анионитных фильтров предусматривают сильноосновные анионитные фильтры, если нужно удалить из воды анионы кремниевой кислоты и – иногда – анионы угольной кислоты. Лучшие результаты получаются при низких значениях рН и почти полном декатионировании воды. Применение анионитов в условиях содержания в исходной воде органических примесей имеет свои особенности.

 

3.3. Обессоливание воды ионным методом

 

  Для очистки сточных вод от анионов сильных кислот применяют технологическую схему одноступенчатого Н-катионирования и ОН-анионирования с использованием сильнокислотного катионита и слабоосновного анионита.

  Для более глубокой очистки сточных вод, в том числе от солей, применяют одно-или двухступенчатое Н-катионирование на сильнокислотном катионите с последующим двухступенчатым ОН-анионированием на слабо-, а затем на сильноосновном анионите.

  При содержании в сточной воде большого количества диоксида углерода и его солей происходит быстрое истощение емкости сильноосновного анионита. Для уменьшения истощения сточную воду после катионитового фильтра дегазируют в специальных дегазаторах с насадкой из колец Рашига или в других аппаратах. При необходимости обеспечивать значение рН ~ 6,7 и очистки сточной воды от анионов слабых кислот вместо анионитовых фильтров второй ступени используют фильтр смешанного действия, загружаемый смесью сильнокислотного катионита и сильноосновного анионита.

  Метод обессоливания воды ионным обменом основан на последовательном фильтровании воды через Н-катионитовый, а затем ОН-, НСО3-или СО3- анионитовый фильтр.  В Н-катионитовом фильтре содержащиеся в воде катионы обмениваются на водород-катионы. В ОН-анионитовых фильтрах, которые проходит вода после Н-катионитовых, анионы образовавшихся кислот обмениваются на ионы ОН-. Требования к воде, подаваемой на Н-ОН фильтры:

взвешенные вещества – не более 8 мг/л;

общее солесодержание – до 3 г/л;

сульфаты и хлориды – до 5 мг/л;

цветность - не более 30 градусов;

окисляемость перманганатная – до 7 мг О2/л;

железо общее – не более 0,5 мг/л;

нефтепродукты – отсутствие;

свободный активный хлор – не более 1 мг/л.

Если исходная вода не отвечает данным требованиям, то необходимо провести предварительную подготовку воды.

 В соответствии с необходимой глубиной обессоливания воды проектируют одно-, двух- и трехступенчатые установки, но во всех случаях для удаления из воды ионов металлов применяют сильнокислотные Н-катиониты с большой обменной способностью.  

Одноступенчатые ионообменные установки применяют для получения воды с солесодержанием до 1 мг/л (но не более 20 мг/л).

 В одноступенчатых ионитовых установках воду последовательно пропускают через группу фильтров с Н-катионитом, а затем через группу фильтров со слабоосновным анионитом; свободный оксид углерода(СО2) удаляется в дегазаторе, устанавливаемом после катионитовых или анионитовых фильтров, если они регенерируются раствором соды или гидрокарбоната. В каждой группе должно быть не менее двух фильтров.

 

3.4. Деминерализация воды ионированием

 

Деминерализация воды - метод, предназначенный для уменьшения минерализации воды, в том числе общей жесткости, общей щелочности, содержания кремниевых соединений. Ионообменный метод деминерализации воды основан на последовательном фильтровании воды через водород-катионитный, а затем HCO3-, OH- или СО3-анионитный фильтр. В фильтрате образуется эквивалентное количество кислоты из анионов, с которыми были связаны катионы. Образовавшийся в процессе разложения гидрокарбонатов СО2 удаляется в декарбонизаторах.

В анионитных фильтрах (гидроксид-анионирование) анионы образовавшихся кислот обмениваются на ионы ОН- (задерживаются фильтром). В результате получается деминерализованная (обессоленная) вода.

Этот метод фактически «несамостоятельный», синтетический. Он представляет собою схемный ряд вариантов сочетания разной степени сложности – в зависимости от цели обработки воды – водород-катионирования и гидроксид-анионирования.

 

3.5. Условия применения ионообменных установок

 

В ионообменные установки должна подаваться вода, содержащая соли – до 3 г/л, сульфаты и хлориды – до 5 ммоль/л, взвешенные вещества – не более 8 мг/л, цветность – не выше 30 градусов, перманганатная окисляемость – до 7 мгО/л. В соответствии с необходимой глубиной обессоливания воды проектируются одно-, двух- и трехступенчатые установки, но во всех случаях для удаления из воды ионов металлов применяют сильнокислотные водород-катиониты. Для промышленных и энергетических потребителей вода может быть подготовлена по одноступенчатой схеме – один катионитный и один анионитный фильтры; по двухступенчатой схеме – соответственно по два катионитных и два анионитных фильтра; по трехступенчатой схеме, причем третья ступень может быть оформлена двумя вариантами: отдельно катионитный и анионитный фильтры или совмещение в одном фильтре катионита и анионита.

После одноступенчатой схемы: солесодержание воды – 2–10 мг/л; удельная электропроводимость – 1–2 мкСм/см; содержание кремниевых соединений не изменяется. Двухступенчатую схему применяют для получения воды с солесодержанием 0,1–0,3 мг/л; удельной электропроводимостью 0,2–0,8 мкСм/см; содержанием кремниевых соединений до 0,1 мг/л. Трехступенчатая схема позволяет снизить солесодержание до 0,05–0,1 мг/л; удельную электропроводимость – до 0,1–0,2 мкСм/см; концентрацию кремниевой кислоты  – до 0,05 мг/л. Для бытовых фильтров применяется одноступенчатая деминерализация – совместная загрузка фильтра катионитом и анионитом.

 

3.6. Фильтры смешанного действия

 

Совмещение в одном аппарате катионита и анионита позволяет достигать высокой степени очистки: из воды за один проход извлекаются почти все находящиеся в растворе ионы. Очищенная вода имеет нейтральную реакцию и низкое солесодержание. После насыщения ионами смесь ионитов – для регенерации – необходимо предварительно разделить на катионит и анионит, имеющих различную плотность. Разделение проводится гидродинамическим методом (водный поток снизу вверх) или путем заполнения фильтра концентрированным 18%-ным раствором реагента. В настоящее время основными зарубежными производителями выпускаются специально по- добранные по плотности и размеру наборы гранул монодисперсных смол, обеспечивающих высокую степень разделения и стабильности показателей.

Из-за сложности операций разделения смеси катионита и анионита и их регенерации такие аппараты используются в основном для очистки малосоленых вод и доочистки воды, обессоленной ранее обратным осмосом, когда регенерация проводится редко или иониты применяются однократно.

 

3.7. Особенности ионообменной технологии

 

Исторически сложилось так, что почти все конструкции ионообменных фильтров – параллельно точные (прямоточные), то есть обрабатываемая вода и регенерирующий раствор движутся в фильтре в одном направлении – сверху вниз. По мере продвижения регенерационного раствора сверху вниз через слой ионита концентрационный напор – разность концентраций между ра- нее задержанными ионами (например, кальцием и магнием) и вытесняющими их ионами регенерирующего раствора (например, натрия) – становится всё меньше и меньше.

В конце своего пути «слабый» регенерационный раствор встречается со слоем ионита, содержащим некоторое, хотя и небольшое, количество ионов, которые нужно вытеснить из ионита. Вытеснения не происходит. В результате следующий поток обработанной воды не достигает необходимого качества.

Эта особенность технологии ионного обмена, а также свойства ионитов, регенерантов и лиотропных рядов определяют принципиальные недостатки ионообменной технологии очистки воды: большой расход реагентов, воды для отмывки ионита от остатков регенерационного раствора и большое количество сточных вод, качество которых не соответствует требованиям нормативных документов.

Выход из положения был найден технологами, предложившими двухступенчатое – для натрий катионирования и трехступенчатое – для деминерализации ионированием – фильтрование. Разновидностью двухступенчатого умягчения можно считать параллельноточное-противоточное фильтрование: несмотря на название, в каждом из пары фильтров осуществляется параллельноточное фильтрование.

 

4. Декарбонизация воды

 

Декарбонизация – удаление оксида углерода,  выделяющегося в процессах водород-катионирования и анионирования.

Удаление его из воды перед сильноосновными анионитными фильтрами необходимо, так как в присутствии СО2 в воде часть рабочей обменной емкости анионита будет затрачиваться на поглощение СО2.

Традиционно для удаления из воды углекислого газа используют декарбонизаторы – аппараты, заполненные различными распределителями воды (чаще – насыпными, например, кольцами Рашига, Палля и др.), называемыми насадкой, или без заполнителей, и продуваемые воздухом навстречу водному потоку. В зависимости от схемы декарбонизатор может быть установлен после первой, или второй ступени водород-катионирования, или после первой (слабоосновной) ступени анионирования. Последняя схема чаще используется в зарубежных разработках. Распространение получают эжекторные (вакуумные, струйные) аппараты. Их работа основана на создании высокоскоростного потока в эжекторном устройстве, в котором происходит вакуумирование потока с последующим подсосом воздуха в воду и его отдувкой. При небольших габаритах такая конструкция обеспечивает большую производительность и высокую эффективность удаления газов. В данном случае – свободного СО2. На небольших станциях водоподготовки и при небольшом содержании в исходной воде бикарбо натов используют схему подготовки воды без декарбонизаторов.

 

5. Баромембранные методы водоподготовки

 

Деминерализация воды ионным обменом и термическая деминерализация (дистилляция) позволяют опреснять воду, почти полностью обессоливать ее. Однако применение этих методов выявило наличие недостатков: необходимость регенерации, громоздкое и дорогое оборудование, дорогие иониты и др. В связи с этим быстрое распространение получили баромембранные методы обработки воды.

Группа баромембранных методов включает в себя обратный осмос, микрофильтрацию, ультрафильтрацию и нанофильтрацию. Обратный осмос (размеры пор 1–15 Å, рабочее давление 0,5–8,0 МПа) применяется для деминерализации воды, задерживает практически все ионы на 92–99%, а при двухступенчатой системе и до 99,9%. Нанофильтрация (размеры пор 10–70 Å, рабочее давление 0,5–8,0 МПа) используется для отделения красителей, пестицидов, гербицидов, сахарозы, некоторых растворенных солей, органических веществ, вирусов и др. Ультрафильтрация (размеры пор 30–1000 Å, рабочее давление 0,2–1,0 МПа) применяется для отделения некоторых коллоидов (кремния, например), вирусов (в том числе полиомиелита), уголь- ной сажи, разделения на фракции молока и др. Микрофильтрация (размеры пор 500–20000 Å, рабочее давление от 0,01 до 0,2 МПа) используется для отделения некоторых вирусов и бактерий, тонкодисперсных пигментов, пыли активных углей, асбеста, красителей, разделения водо-масляных эмульсий и т.п. Чем более крупные поры образованы в мембране, тем более понятен процесс фильтрации через мембрану, тем более он по физическому смыслу приближается к так называемому механическому фильтрованию.

 

Промежуточную группу образуют так называемые трековые мембраны, получаемые посредством облучения на циклотроне лавсановых (полиэтилентерефталантных) пленок потоком тяжелых ионов. После воздействия на пленку ультрафиолетовыми лучами и травлением щелочью в пленке образуются поры диаметром 0,2–0,4 мкм (в основном 0,3 мкм).

 

5.1. Обратный осмос

 

Обратный осмос – один из наиболее перспективных методов обработки воды, преимущества которого заключены в малых энергозатратах, простоте конструкций аппаратов и установок, малых их габаритах и простоте эксплуатации; применяется для обессоливания вод с солесодержанием до 40 г/л, причем границы его использования постоянно расширяются.

Сущность метода. Если растворитель и раствор разделить полупроницаемой перегородкой, пропускающей только молекулы растворителя, то растворитель начнет переходить через перегородку в раствор до тех пор, пока концентрации растворов по обе стороны мембраны не выравниваются. Процесс самопроизвольного перетекания веществ через полупроницаемую мембрану, разделяющую два раствора различной концентрации (частный случай – чистый растворитель и раствор), называется осмосом (от греч.: osmos – толчок, давление). Если над раствором создать противодавление, скорость перехода растворителя через мембрану уменьшится. При установлении равновесия отвечающее ему давление может служить количественной характеристикой явления обратного осмоса. Оно называется осмотическим давлением и равно тому давлению, которое нужно приложить к раствору, чтобы привести его в равновесие с чистым растворителем, отделенным от него полупроницаемой перегородкой. Применительно к системам водоподготовки, где растворителем является вода, процесс обратного осмоса можно представить следующим образом: если со стороны протекающей через аппарат природной воды с некоторым содержанием примесей приложить давление, превышающее осмотическое, то вода будет просачиваться через мембрану и скапливаться по другую ее сторону, а примеси – оставаться с исходной водой, их концентрация будет увеличиваться.

На практике мембраны обычно не обладают идеальной полупроницаемостью и наблюдается некоторый переход через мембрану растворенного вещества.

Осмотические давления растворов могут достигать десятков МПа. Рабочее давление в обратноосмотических установках должно быть значительно больше, поскольку их производительность определяется движущей силой процесса – разностью между рабочим и осмотическим давлением. Так, при осмотическом давлении 2,45 МПа для морской воды, содержащей 3,5% солей, рабочее давление в опреснительных установках рекомендуется поддерживать на уровне 6,85–7,85 МПа.

 

5.2. Ультрафильтрация

 

Ультрафильтрация – процесс мембранного разделения, а также фракционирования и концентрирования растворов. Он протекает под действием разности давлений (до и после мембраны) растворов высокомолекулярных и низкомолекулярных соединений.

Ультрафильтрация заимствовала у обратного осмоса способы получения мембран, а также во многом подобна ему и по аппаратному исполнению. Отличие заключается в гораздо более высоких требованиях к отводу от мембранной поверхности концентрированного раствора вещества, способного формировать в случае ультрафильтрации гелеобразные слои и малорастворимые осадки. Ультрафильтрация по схеме ведения процесса и параметрам – промежуточное звено между фильтрованием и обратным осмосом.

Технологические возможности ультрафильтрации во многих случаях гораздо шире, чем у обратного осмоса. Так, при обратном осмосе, как правило, происходит общее задержание почти всех частиц. Однако на практике часто возникает задача селективного разделения компонентов раствора, то есть фракционирования. Решение этой задачи является очень важным, поскольку возможны отделение и концентрирование весьма ценных или редких веществ (белки, физиологически активные вещества, полисахариды, комплексы редких металлов и т.д.). Ультрафильтрацию в отличие от обратного осмоса используют для разделения систем, в которых молекулярная масса растворенных компонентов намного больше молекулярной массы растворителя. Например, для водных растворов принимают, что ультрафильтрация применима тогда, когда хотя бы один из компонентов системы имеет молекулярную массу от 500 и больше.

Движущей силой ультрафильтрации является разность давлений по обе стороны мембраны. Обычно ультрафильтрацию проводят при сравнительно невысоких давлениях: 0,3–1 МПа. В случае ультрафильтрации значительно повышается роль внешних факторов. Так, в зависимости от условий (давление, температура, интенсивность турбулизации, состав растворителя и т.д.), на одной и той же мембране можно добиться полного разделения веществ, невозможного при другом сочетании параметров. К ограничениям ультрафильтрации относятся: узкий технологический диапазон – необходимость точного поддержания условий процесса; сравнительно невысокий предел концентрирования, который для гидрофильных веществ обычно не превышает 20–35%, а для гидрофобных – 50–60%; небольшой (1–3 года) срок службы мембран вследствие осадкообразования в порах и на их поверхности. Это приводит к загрязнению, отравлению и нарушению структуры мембран или ухудшению их механических свойств.

 

5.3. Мембраны

 

Определяющими при реализации мембранных методов являются разработка и изготовление полупроницаемых мембран, отвечающих следующим основным требованиям:

– высокая разделяющая способность (селективность);

– высокая удельная производительность (проницаемость);

– химическая стойкость к действию компонентов разделяемой системы;

– неизменность характеристик в процессе эксплуатации;

– достаточная механическая прочность, отвечающая условиям монтажа, транспортирования и  

   хранения мембран;

– низкая стоимость.

В настоящее время на рынке есть мембраны двух основных типов, изготовляемые из ацетилцеллюлозы (смесь моно-, ди- и триацетата) и ароматических полиамидов. По форме мембраны подразделяются на трубчатые, листовые (спирально свернутые) и выполненные в виде полых волокон. Современные обратноосмотические мембраны – композитные – состоят из нескольких слоев. Общая толщина – 10–150 мкм, причем толщина слоя, определяющего селективность мембраны, не более 1 мкм.

С практической точки зрения наибольший интерес представляют два показателя процесса: коэффициент задержания растворенного вещества (селективность),  и производительность (объемный поток) через мембрану. Оба этих показателя неоднозначно характеризуют полупроницаемые свойства мембраны, так как в значительной степени зависят от условий процесса (давление, гидродинамическая обстановка, температура и т.д.).

 

 

 

 

6. Методы обезжелезивания воды

 

Вода с высоким содержанием железа обладает неприятным вкусом, а использование такой воды в производственных процессах (текстильная промышленность, производство бумаги и т.д.) недопустимо, так как приводит к появлению ржавых пятен и разводов на готовой продукции. Ионы железа и марганца загрязняют ионообменные смолы, поэтому при проведении большинства ионообменных процессов предшествующей стадией обработки воды является их удаление. В теплоэнергетическом оборудовании (котлы паровые и водогрейные, теплообменники) железо – источник образования железонакипных отложений на поверхностях нагрева. В воде, поступающей на обработку в баромембранные, электродиализные, магнитные аппараты – всегда лимитируется содержание железа. Очистка воды от соединений железа – в ряде случаев довольно сложная задача, которая может быть решена только комплексно. Это обстоятельство в первую очередь связано с многообразием форм существования железа в природных водах. Чтобы определить наиболее действенный и экономичный для конкретной воды метод обезжелезивания, нужно произвести пробное удаление железа. Метод обезжелезивания воды, расчетные параметры и дозы реагентов следует принимать на основе результатов технологических изысканий, выполненных непосредственно у источника водоснабжения.

Для обезжелезивания поверхностных вод используются только реагентные методы с последующей фильтрацией. Обезжелезивание подземных вод осуществляют фильтрованием в сочетании с одним из способов предварительной обработки  воды:

- упрощенная аэрация;

- аэрация на специальных устройствах;

- коагуляция и осветление;

- введение таких реагентов-окислителей, как хлор, гипохлорит натрия или кальция, озон,  

  перманганат калия.

При мотивированном обосновании применяют катионирование, диализ, флотацию, электрокоагуляцию и другие методы.

Для удаления из воды железа, содержащегося в виде коллоида гидроксида железа или в виде коллоидальных органических соединений, например гуматов железа, используют коагулирование сульфатом алюминия или оксихлоридом алюминия, или железным купоросом с добавлении ем хлора или гипохлорита натрия.

В качестве наполнителей для фильтров в основном используют песок, антрацит, сульфоуголь, керамзит, пиролюзит, а также фильтрующие материалы, обработанные катализатором, ускоряющим процесс окисления двухвалентного железа в трехвалентное. В последнее время всё большее распространение получают наполнители с каталитическими свойствами.

 

При наличии в воде коллоидного двухвалентного железа требуется проведение пробного обезжелезивания. Если отсутствует возможность осуществить его на первой стадии проектирования, выбирают один из вышеперечисленных методов на основании проведенного пробного обезжелезивания в лаборатории или опыта работы аналогичных установок.

 

7. Деманганация воды

 

Марганец присутствует в земной коре в большом количестве и обычно встречается вместе с железом. Содержание растворенного марганца в подземных и поверхностных водах, бедных кислородом, достигает нескольких мг/л. Российские санитарные нормы ограничивают уровень предельно допустимого содержания марганца в воде хозяйственно-питьевого назначения значением 0,1 мг/л.

В некоторых странах Европы требования жестче: не более 0,05 мг/л. Если содержание марганца больше этих значений, ухудшаются органолептические свойства воды. При значениях марганца больше 0,1 мг/л появляются пятна на санитарно-технических изделиях, а также нежелательный привкус воды. На внутренних стенках трубопроводов образуется осадок, который отслаивается в виде черной пленки.

В подземных водах марганец находится в виде хорошо растворимых солей в двухвалентном состоянии. Для удаления марганца из воды его необходимо перевести в нерастворимое со стояние окислением в трех- и четырехвалентную форму. Окисленные формы марганца гидролизуются с образованием практически нерастворимых гидроксидов.

Для эффективного окисления марганца кислородом необходимо, чтобы значение рН очищаемой воды было на уровне 9,5–10,0. Перманганат калия, хлор или его производные (гипохлорит натрия), озон позволяют вести процесса демаганации при меньших значениях рН, равных 8,0–8,5. Для окисления 1 мг растворенного марганца нужно 0,291 мг кислорода.

 

7.1. Методы деманганации

 

Глубокая аэрация с последующим фильтрованием. На первом этапе очистки из воды под вакуумом извлекают свободную углекислоту, что способствует повышению значения рН до 8,0–8,5. Для этой цели используют вакуумно-эжекционный аппарат, при этом в его эжекционной части происходят диспергирование воды и ее насыщение кислородом воздуха. Далее вода направляется на фильтрацию через зернистую загрузку, например, кварцевый песок.Этот метод очистки применим при перманганатной окисляемости исходной воды не более 9,5 мгО/л. В воде обязательно присутствие двухвалентного железа, при окислении которого образуется гидроксид железа, адсорбирующий Mn2+ и каталитически его окисляющий.

Соотношение концентраций [Fe2+] / [Mn2+] не должно быть менее 7/1. Если в исходной воде такое соотношение не выполняется, то в воду дополнительно дозируют сульфат железа (железный купорос).

Деманганация перманганатом калия. Метод применим как для поверхностных, так и для подземных вод. При введении в воду перманганата калия растворенный марганец окисляется с образованием малорастворимого оксида марганца. Осажденный оксид марганца в виде хлопьев имеет высокую развитую удельную, что определяет его высокие сорбционные свойства. Осадок – хороший катализатор, позволяющий вести демангацию при рН = 8,5.

Как уже отмечалось, перманганат калия обеспечивает удаление из воды не только марганца, но и железа в различных формах. Также удаляются запахи и за счет сорбционных свойств улучшаются вкусовые качества воды.

После перманганата калия вводят коагулянт для удаления продуктов окисления и взвешенных веществ и далее фильтруют на песчаной загрузке. При очистке от марганца подземных вод параллельно с перманганатом калия вводят активированную кремниевую кислоту или флокулянты. Это позволяет укрупнить хлопья оксида марганца.

 

 

8. Обеззараживание воды

 

Обеззараживание воды есть санитарно-технические мероприятия по уничтожению в воде бактерий и вирусов, вызывающих инфекционные заболевания. Различают химические, или реагентные, и физические, или безреагентные, способы обеззараживания воды. К наиболее распространенным химическим способам обеззараживания воды относят хлорирование и озонирование воды, к физическим — обеззараживание ультрафиолетовыми лучами. Перед обеззараживанием вода обычно подвергается водоочистке, при которой удаляются яйца гельминтов и значительная часть микроорганизмов.

При химических способах обеззараживания воды для достижения стойкого обеззараживающего эффекта необходимо правильно определить дозу вводимого реагента и обеспечить достаточную длительность контакта его с водой. Доза реагента определяется пробным обеззараживанием или расчётными методами. Для поддержания необходимого эффекта при химических способах обеззараживания воды доза реагента рассчитывается с избытком (остаточный хлор, остаточный озон), гарантирующим уничтожение микроорганизмов, попадающих в воду некоторое время после обеззараживания.

В существующей практике обеззараживания питьевой воды хлорирование наиболее распространено. В США 98,6 % воды (подавляющее количество) подвергается хлорированию. Аналогичная картина имеет место и в России, и в других странах, т. е. в мире в 99 из 100 случаев для дезинфекции используют либо чистый хлор, либо хлорсодержащие продукты

Такая популярность хлорирования связана и с тем, что это единственный способ, обеспечивающий микробиологическую безопасность воды в любой точке распределительной сети в любой момент времени благодаря эффекту последействия. Этот эффект заключается в том, что после совершения действия по внедрению молекул хлора в воду («последействие») последние сохраняют свою активность по отношению к микробам и угнетают их ферментные системы на всем пути следования воды по водопроводным сетям от объекта водоподготовки (водозабора) до каждого потребителя. Подчеркнем, что эффект последействия присущ только хлору.

Озонирование основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, придающие воде неприятный запах (например, гуминовые основания). Количество озона, необходимое для обеззараживания воды, зависит от степени загрязнения воды и составляет 1—6 мг/л при контакте в 8—15 мин; количество остаточного озона должно составлять не более 0,3—0,5 мг/л, т.к. более высокая доза придаёт воде специфический запах и вызывает коррозию водопроводных труб. В  связи с большим расходом электроэнергии, использованием сложной аппаратуры и высококвалифицированного технадзора озонирование нашло применение для обеззараживания воды  только при централизованном водоснабжении объектов специального назначения.

Из физических способов обеззараживания воды наибольшее распространение получило обеззараживание ультрафиолетовыми лучами, бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий и не изменяют органолептического свойства воды. Необходимым условием эффективности этого способа обеззараживания являются бесцветность и прозрачность обеззараживаемой воды, недостатком —  отсутствие последействия. Поэтому обеззараживание воды ультрафиолетовыми лучами применяют главным образом для подземных и подрусловых вод. Для обеззараживания воды открытых водоисточников находит применение сочетание ультрафиолетовых лучей с небольшими дозами хлора.

Из физических способов индивидуального обеззараживания воды наиболее распространённым и надёжным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических факторов, часто содержащихся в открытых водоисточниках, удаляются растворённые в воде газы и уменьшается жёсткость воды. Вкусовые качества воды при кипячении меняются мало.

При контроле эффективности обеззараживания воды на водопроводах исходят из содержания в обеззараженной воде сапрофитной микрофлоры и, в частности, кишечных палочек, т.к. все известные возбудители инфекционных болезней человека, распространяющихся водным путём (холера, брюшной тиф, дизентерия), более чувствительны к бактерицидному действию химических и физических средств обеззараживания воды, чем кишечная палочка. Вода считается годной для водопользования при содержании в 1 л не более 3 кишечных палочек. На водопроводных станциях, использующих хлорирование или озонирование, каждый 1 ч (или 30 мин) проверяется содержание остаточного хлора или озона как косвенного показателя надёжности обеззараживания воды.

В России сложилось серьезное положение с техническим состоянием водоочистных комплексов централизованных водозаборов, которые во многих случаях были спроектированы и построены 70–80 лет назад. Их износ с каждым годом нарастает, а более 40 % оборудования требует полной замены . Анализ аварийных ситуаций показывает, что 57 % аварий на объектах ВКХ происходят из-за ветхости оборудования, поэтому дальнейшая его эксплуатация будет приводить к резкому возрастанию аварий, ущерб от которых значительно превысит затраты на их предотвращение. Положение усугубляется тем, что из-за изношенности сетей вода в них подвергается вторичному заражению, и требует дополнительной очистки и обеззараживания. Еще хуже положение с централизованным водоснабжением населения в сельской местности.

Это дает основания назвать проблему гигиены водоснабжения, т. е. обеспечение населения доброкачественной надежно обеззараженной водой, важнейшей проблемой, требующей комплексного и наиболее эффективного решения. Безопасная питьевая вода, по определению опубликованной Всемирной организацией здравоохранения «Руководства по обеспечению качества питьевой воды», не должна представлять никаких рисков для здоровья в результате ее потребления в течение всей жизни, включая различную уязвимость человека к болезням на разных этапах жизни. К группе наибольшего риска в отношении болезней, передаваемых через воду, относятся дети грудного и раннего возраста, люди с ослабленным здоровьем или живущие в антисанитарных условиях и люди пожилого возраста.

Все технологические схемы очистки и обеззараживания воды должны опираться на основные критерии, предъявляемые к качеству питьевой воды: питьевая вода должна быть безопасна в эпидемиологическом отношении, безвредна по химическому составу и обладать благоприятными органолептическими (вкусовыми) свойствами. Эти критерии и лежат в основе нормативных актов всех стран  (в России СанПиН 2.14.1074–01). Остановимся  на основных наиболее часто применяемых дезинфектантах: хлорирование, озонирование и ультрафиолетовое обеззараживание воды.

 

8.1. Хлорирование воды

 

В последнее десятилетие в России наблюдается повышенный интерес к объектам водоподготовки с точки зрения лоббирования корпоративных бизнес-интересов. Причем эти обсуждения обосновываются благими намерениями обеспечить население качественной водой. Под такие рассуждения  о необходимости потребления чистой воды производится попытка внедрения бессмысленных и необоснованных новаций в нарушение апробированных технологий и СанПиН 2.14.1074–01, который отвечает самым высоким мировым стандартам и требует обязательного присутствия хлора в питьевой воде систем ценрализованного водоснабжения (вспомните про эффект последействия, присущий только хлору). Поэтому пора развеять заблуждения,  от  которых зависит здоровье нации.

Кроме хлора для обеззараживания вода применяют его соединения, из которых чаще используют гипохлорит натрия.

Гипохлорит натрия - NaCIO. В промышленности гипохлорит натрия выпускается в качестве различных растворов с разной концентрацией. Его дезинфицирующее действие в первую очередь основано на том, что при растворении гипохлорита натрия  точно так же, как и хлор, образует хлорноватистую при растворении в воде. Он оказывает непосредственное дезинфицирующее и окисляющее действие.

Различные марки гипохлорита находят применение в следующих направлениях:

раствор марки А согласно ГОСТ 11086-76 применяется в химической промышленности, чтобы обезжирить питьевую воду и воду для плавательных бассейнов, а также для отбелки и дезинфекции;

раствор марки Б согласно ГОСТ 11086-76 применяется в витаминной промышленности, в качестве окислителя для отбеливания тканей;

раствор марки А согласно ТУ применяется во избежание заражения сточных и природных вод в хозяйственно-питьевом водоснабжении. Еще данным раствором дезинфицируют воду рыбохозяйственных водоемов, получают отбеливающие средства и производят дезинфекцию в пищевой промышленности;

раствор марки Б согласно ТУ используется для дезинфекции территорий, которые были загрязнены фекальными сбросами, бытовыми и пищевыми отходами; еще он очень хорош для обеззараживании сточных вод;

раствор марки Г, В согласно ТУ применяется для дезинфекции воды в рыбохозяйственном водоеме;

раствор марки Э согласно ТУ применяется для дезинфекции также как и в марке А согласно ТУ. Еще он очень распространен на предприятиях общественного питания, в медико-санитарных учреждениях, для обеззараживания стоков, питьевой воды, отбеливания, на объектах ГО и т.д.

Внимание! Меры предосторожности: раствор гипохлорита натрия ГОСТ 11086-76 марки А является очень сильным окислителем, при попадании на кожу способен вызвать ожог, при случайном попадании в глаза - необратимую слепоту.

При нагревании свыше 35°С гипохлорит натрия разлагается с последующим образованием хлоратов и отделением хлора и кислорода. ПДК хлора в среде рабочей зоны - 1 мг/мЗ ; в среде населенных мест: 0,1 мг/мЗ - максимальная разовая и 0,03 мг/мЗ - дневная.

Гипохлорит натрия не является горючим средством и невзрывоопасен. Но, гипохлорит натрия в соответствии с ГОСТ 11086-76 марки А при контакте с органическим горючим веществом (опилки, ветошь древесина) в ходе высыхания способен вызвать внезапное самовозгорание.

Индивидуальное предохранение персонала должно осуществляться с использованием спецодежды и индивидуальные средства защиты: противогаз марки Б или БКФ, перчатки резиновые и очки защитные.

При воздействии раствора гипохлорита натрия на кожу и слизистую, в срочном порядке нужно обмыть их под проточной струёй воды в течение 20 минут, при попадании капель раствора в глаза необходимо сразу промыть их большим количеством воды и транспортировать пострадавшего к доктору.

Хранение гипохлорита натрия. Гипохлорит натрия следует хранить в не отапливаемом вентилируемом складском помещении. Не допускать хранение с органическими продуктами, горючим материалом и кислотой. Не допускать попадания в гипохлорит натрия солей тяжелых металлов и контакт с такими металлами. Данный продукт упаковывают и транспортируют в полиэтиленовой таре (контейнер, бочка, канистра) или титановой емкости и танк-контейнере. Продукт гипохлорита натрия не является стабильным и гарантийного срока хранения не имеет (примечание к ГОСТ 11086-76).

Более содержательно о достоинствах и недостатках обеззараживания воды хлором или гипохлоритом натрия можно ознакомиться на сайте www.kravt.ru. 

 

8.2. Озонирование воды

 

Озонирование воды находит применение при обеззараживании питьевой воды, воды плавательных бассейнов, сточных вод и т.д., позволяя одновременно достигнуть обесцвечивания, окисления железа и марганца, устранения привкуса и запаха воды и обеззараживания за счет весьма высокой окисляющей способности озона.

Озон – газ голубоватого или бледно-фиолетового цвета, который самопроизвольно диссоциирует на воздухе и в водном растворе, превращаясь в кислород. Скорость распада озона резкоувеличивается в щелочной среде и с ростом температуры. Обладает большой окислительной способностью, разрушает многие органические вещества, присутствующие в природных и сточных водах; плохо растворяется в воде и быстро саморазрушается; будучи мощным окислителем, может при длительном воздействии усилить коррозию трубопроводов.

Необходимо учитывать некоторые особенности озонирования. Прежде всего, нужно помнить о быстром разрушении озона, то есть отсутствии такого длительного действия, как у хлора.

Озонирование может вызвать (особенно у высокоцветных вод и вод с большим количеством органики) образование дополнительных осадков, поэтому нужно предусматривать после озонирования фильтрование воды через активный уголь. В результате озонирования образуются побочные продукты включающие: альдегиды, кетоны, органические кислоты, броматы (в присутствии бромидов), пероксиды и другие соединения. При воздействии на гуминовые кислоты, где есть ароматические соединения фенольного типа, может появиться и фенол. Некоторые вещества стойки к озону. Этот не-достаток преодолевается введением в воду перекиси водорода по технологии фирмы «Дегремон» (Франция) в трехкамерном реакторе.

 

 

 

 

8.3. Ультрафиолетовое обеззараживание воды

 

Ультрафиолетовым называется электромагнитное излучение в пределах длин волн от 10 до 400 нм.

Для обеззараживания используется «ближняя область»: 200–400 нм (длина волн природного ультрафиолетового излучения у поверхности земли больше 290 нм). Наибольшим бактерицидным действием обладает электромагнитное излучение на длине волны 200–315 нм. В современных УФ-устройствах применяют излучение с длиной волны 253,7 нм.

Бактерицидное действие ультрафиолетовых лучей объясняется происходящими под их воздействием фотохимическими реакциями в структуре молекулы ДНК и РНК, составляющими универсальную информационную основу механизма воспроизводимости живых организмов.

Результат этих реакция – необратимые повреждения ДНК и РНК. Кроме того, действие ультрафиолетового излучения вызывает нарушения в структуре мембран и клеточных стенок микроорганизмов. Всё это в конечном итоге приводит к их гибели.

УФ-стерилизатор представляет собой металлический корпус, внутри которого находится бактерицидная лампа. Она, в свою очередь, помещается в защитную кварцевую трубку. Вода омывает кварцевую трубку, обрабатывается ультрафиолетом и, соответственно, обеззараживается. В одной установке может быть несколько ламп. Степень инактивации или доля погибших под воздействием УФ-излучения микроорганизмов пропорциональны интенсивности излучения и времени воздействия. Соответственно количество обезвреженных (инактивированных) микроорганизмов экспоненциально растет с увеличением дозы облучения. Из-за различной сопротивляемости микроорганизмов доза ультрафиолета, необходимая для инактивации, например 99,9%, сильно варьируется от малых доз для бактерий до очень больших доз для спор и простейших. При прохождении через воду УФ-излучение ослабевает вследствие эффектов поглощения и рассеяния. Для учета этого ослабления вводится коэффициент поглощения водой, значение которого зависит от качества воды, особенно от содержания в ней железа, марганца, фенола, а также от мутности воды.

Обеззараживание УФ-излучением рекомендуется применять для обработки воды, соответствующей требованиям:

мутность – не более 2 мг/л (прозрачность по шрифту ≥30 градусов);

цветность – не более 20 градусов платино-кобальтовой шкалы;

содержание железа (Fe) – не более 0,3 мг/л (по СанПиН 2.1.4.1074-01) и 1 мг/л (по технологии  

                                            установок УФ); коли-индекс – не более 10 000 шт/л.

Для оперативного санитарного и технологического контроля эффективности и надежности обеззараживания воды ультрафиолетом, как и при хлорировании и озонировании, применяется определение бактерий кишечной палочки (БГКП).

Опыт применения ультрафиолета показывает: если в установке доза облучения обеспечивается не ниже определенного значения, то гарантируется устойчивый эффект обеззараживания. В мировой практике требования к минимальной дозе облучения варьируются в пределах от 16 до 40 мДж/см2. Минимальная доза, соответствующая российским нормативам, – 16 мДж/см2.

 

Достоинства метода:

• наименее «искусственный» – ультрафиолетовые лучи;

• универсальность и эффективность поражения различных микроорганизмов – УФ-лучи

   уничтожают не только вегетативные, но и спорообразующие бактерии, которые при

   хлорировании обычными нормативными дозами хлора сохраняют жизнеспособность;

• физико-химический состав обрабатываемой воды сохраняется;

• отсутствие ограничения по верхнему пределу дозы;

• не требуется организовывать специальную систему безопасности, как при хлорировании и

  озонировании;

• отсутствуют вторичные продукты;

• не нужно создавать реагентное хозяйство;

• оборудование работает без специального обслуживающего персонала.

Недостатки метода:

• падение эффективности при обработке плохо очищенной воды (мутная, цветная вода плохо

   просвечивается);

• периодическая отмывка ламп от налетов осадков, требующаяся при обработке мутной и

  жесткой воды;

• отсутствует «последействие», то есть возможность вторичного (после обработки излучением)

  заражения воды.

 

8.4. Сравнение основных методов обеззараживания воды

 

Основные методы обеззараживания воды, описанные выше имеют  самые разнообразные достоинства и недостатки, изложенные в многочисленных публикациях на эту тему. Отметим наиболее весомые из них.

• Каждая из трех технологий, если она применяется в соответствии с нормами, может обеспечить необходимую степень инактивации бактерий, в частности, по индикаторным бактериям группы кишечной палочки и общему микробному числу.

• По отношению к цистам патогенных простейших высокую степень очистки не обеспечивает ни один из методов. Для удаления этих микроорганизмов рекомендуется сочетать процессы обеззараживания с процессами уменьшение мутности.

• Технологическая простота процесса хлорирования и недефицитность хлора обусловливают широкое распространение именно этого метода обеззараживания.

• Метод озонирования наиболее технически сложен и дорогостоящ по сравнению с хлорированием и ультрафиолетовым обеззараживанием.

• Ультрафиолетовое излучение не меняет химический состав воды даже при дозах, намного превышающих практически необходимые.

• Хлорирование может привести к образованию нежелательных хлорорганических соединений, обладающих высокой токсичностью и канцерогенностью.

• При озонировании также возможно образование побочных продуктов, классифицируемых нормативами как токсичные – альдегиды, кетоны и другие алифатические ароматические соединения.

• Ультрафиолетовое излучение убивает микроорганизмы, но образующиеся осколки (клеточные стенки бактерий, грибков, белковые фрагменты вирусов) остаются в воде. Поэтому рекомендуется последующая тонкая фильтрация.

Только хлорирование обеспечивает эффект последействия, то есть обладает необходимым длительным действием, что делает применение этого метода обязательным при подаче чистой воды в водопроводную сеть.

 

9. Электрохимические методы

 

Электрохимические методы находят широкое применение, когда традиционные способы механической, биологической и физико-химической обработки воды оказываются недостаточно эффективными или не могут использоваться, например, из-за дефицита производственных площадей, сложности доставки и использования реагентов или по другим причинам. Установки по реализации этих методов компактны, высокопроизводительны, процессы управления и контроля сравнительно просто автоматизируются. Обычно электрохимическая обработка используется в сочетании с другими способами очистки, позволяя успешно очистить природные воды от примесей различного состава и дисперсности.

Электрохимическими методами можно корректировать физико-химические свойства обрабатываемой воды, они обладают высоким бактерицидным эффектом, значительно упрощают технологические схемы очистки. Во многих случаях электрохимические методы исключают вторичное загрязнение воды анионными и катионными остатками, характерными для реагентных методов.

Электрохимическая очистка воды основана на электролизе, сущность которого заключается в использовании электрической энергии для про- ведения процессов окисления и восстановления. Процесс электролиза протекает на поверхности электродов, находящихся в электропроводном растворе, – электролите.

Для процесса электролиза необходимы: раствор электролита – загрязненная вода, в которой всегда присутствуют ионы в той или иной концентрации, обеспечивающие электропроводимость воды; электроды, погруженные в раствор электролита; внешний источник тока; токоподводы – металлические проводники, соединяющие электроды с источником тока. Вода сама по себе – плохой проводник, однако находящиеся в растворе заряженные ионы, образующиеся при диссоциации электролита, под действием напряжения, приложенного к электродам, двигаются по двум противоположным направлениям: положительные ионы (катионы) к катоду, отрицательные (анионы) – к аноду. Анионы отдают аноду свои «лишние» электроны, превращаясь в нейтральные атомы. Одновременно с этим катионы, достигая катода, получают от него недостающие электроны и также становятся нейтральными атомами или группой атомов (молекулами). При этом число электронов, получаемых анодом, равно числу электронов, передаваемых катодом. В цепи протекает постоянный электрический ток. Таким образом, при электролизе протекают окислительно-восстановительные процессы: на аноде – потеря электронов (окисление), на катоде – приобретение электронов (восстановление). Однако механизм электрохимических реакций существенно отличается от обычных химических превращений веществ. Отличительная особенность электрохимической реакции –пространственное разделение электрохимических реакций на два сопряженных процесса: процессы разложения веществ или получения новых продуктов происходят на границе электрод-раствор при помощи электрического тока. При проведении электролиза одновременно с электродными реакциями в объеме раствора происходят изменение рН и окислительно-восстановительного потенциала системы, а также фазово-дисперсные превращения примесей воды.

www.aqua-term.ru

 

наверх